
TAU Performance System
(ACTS Workshop LBL)

Sameer Shende, Allen D. Malony
University of Oregon

{sameer, malony}@cs.uoregon.edu

TAU Performance SystemACTS Workshop 2005 2

Research Motivation

� Tools for performance problem solving
� Empirical-based performance optimization process
� Performance technology concerns

characterization

Performance
Tuning

Performance
Diagnosis

Performance
Experimentation

Performance
Observation

hypotheses

properties

• Instrumentation
• Measurement
• Analysis
• Visualization

Performance
Technology

• Experiment
management

• Performance
storage

Performance
Technology

TAU Performance SystemACTS Workshop 2005 3

Outline of Talk
� Performance problem solving

� Scalability, productivity, and performance technology
� Application-specific and autonomic performance tools

� TAU parallel performance system and advances
� Performance data management and data mining

� Performance Data Management Framework (PerfDMF)
� PerfExplorer

� Multi-experiment case studies
� Clustering analysis

� Future work and concluding remarks

TAU Performance SystemACTS Workshop 2005 4

TAU Performance System
� Tuning and Analysis Utilities (13+ year project effort)
� Performance system framework for HPC systems

� Integrated, scalable, flexible, and parallel
� Targets a general complex system computation model

� Entities: nodes / contexts / threads
� Multi-level: system / software / parallelism
� Measurement and analysis abstraction

� Integrated toolkit for performance problem solving
� Instrumentation, measurement, analysis, and visualization
� Portable performance profiling and tracing facility
� Performance data management and data mining

� University of Oregon , Research Center Jülich, LANL

TAU Performance SystemACTS Workshop 2005 5

Definitions – Profiling
� Profiling

� Recording of summary information during execution
� inclusive, exclusive time, # calls, hardware statistics, …

� Reflects performance behavior of program entities
� functions, loops, basic blocks
� user-defined “semantic” entities

� Very good for low-cost performance assessment
� Helps to expose performance bottlenecks and hotspots
� Implemented through

� sampling: periodic OS interrupts or hardware counter traps
� instrumentation: direct insertion of measurement code

TAU Performance SystemACTS Workshop 2005 6

Definitions – Tracing

� Tracing
� Recording of information about significant points (events)

during program execution
� entering/exiting code region (function, loop, block, …)
� thread/process interactions (e.g., send/receive message)

� Save information in event record
� timestamp
�CPU identifier, thread identifier
�Event type and event-specific information

� Event trace is a time-sequenced stream of event records
� Can be used to reconstruct dynamic program behavior
� Typically requires code instrumentation

TAU Performance SystemACTS Workshop 2005 7

Event Tracing: Instrumentation, Monitor, Trace

1 master

2 slave

3 ...

void slave {
trace(ENTER, 2);
...
recv(A, tag, buf);
trace(RECV, A);
...
trace(EXIT, 2);

}

void master {
trace(ENTER, 1);
...
trace(SEND, B);
send(B, tag, buf);
...
trace(EXIT, 1);

} MONITOR 58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

CPU A:

CPU B:

Event definition

timestamp

TAU Performance SystemACTS Workshop 2005 8

Event Tracing: “Timeline” Visualization

1 master

2 slave

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
master
slave

58 60 62 64 66 68 70

B

A

TAU Performance SystemACTS Workshop 2005 9

TAU Parallel Performance System Goals
� Multi-level performance instrumentation

� Multi-language automatic source instrumentation
� Flexible and configurable performance measurement
� Widely-ported parallel performance profiling system

� Computer system architectures and operating systems
� Different programming languages and compilers

� Support for multiple parallel programming paradigms
� Multi-threading, message passing, mixed-mode, hybrid

� Support for performance mapping
� Support for object-oriented and generic programming
� Integration in complex software, systems, applications

TAU Performance SystemACTS Workshop 2005 10

TAU Performance System Architecture

event
selection

TAU Performance SystemACTS Workshop 2005 11

TAU Performance System Architecture

TAU Performance SystemACTS Workshop 2005 12

Advances in TAU Instrumentation
� Source instrumentation

� Program Database Toolkit (PDT)
� automated Fortran 90/95 support (Cleanscape Flint parser)
� statement level support in C/C++ (Fortran soon)

� TAU_COMPILER to automate instrumentation process
� Automatic proxy generation for component applications

� automatic CCA component instrumentation
� Python instrumentation and automatic instrumentation

� Continued integration with dynamic instrumentation
� Update of OpenMP instrumentation (POMP2)
� Selective instrumentation and overhead reduction
� Improvements in performance mapping instrumentation

TAU Performance SystemACTS Workshop 2005 13

Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE

PDBhtml

SILOON

CHASM

TAU_instr

Program
documentation

Application
component glue

C++ / F90/95
interoperability

Automatic source
instrumentation

TAU Performance SystemACTS Workshop 2005 14

TAU Instrumentation Approach

� Support for standard program events
� Routines
� Classes and templates
� Statement-level blocks

� Support for user-defined events
� Begin/End events (“user-defined timers”)
� Atomic events (e.g., size of memory allocated/freed)
� Selection of event statistics

� Support definition of “semantic” entities for mapping
� Support for event groups
� Instrumentation optimization (eliminate instrumentation

in lightweight routines)

TAU Performance SystemACTS Workshop 2005 15

TAU Instrumentation

� Flexible instrumentation mechanisms at multiple levels
� Source code

�manual (TAU API, TAU Component API)
� automatic

� C, C++, F77/90/95 (Program Database Toolkit (PDT))
� OpenMP (directive rewriting (Opari), POMP spec)

� Object code
� pre-instrumented libraries (e.g., MPI using PMPI)
� statically-linked and dynamically-linked

� Executable code
� dynamic instrumentation (pre-execution) (DynInstAPI)
� virtual machine instrumentation (e.g., Java using JVMPI)

� Proxy Components

TAU Performance SystemACTS Workshop 2005 16

Using TAU – A tutorial

� Configuration
� Instrumentation

� Manual
� MPI – Wrapper interposition library
� PDT- Source rewriting for C,C++, F77/90/95
� OpenMP – Directive rewriting
� Component based instrumentation – Proxy components
� Binary Instrumentation

�DyninstAPI – Runtime Instrumentation/Rewriting binary
� Java – Runtime instrumentation
�Python – Runtime instrumentation

� Measurement
� Performance Analysis

TAU Performance SystemACTS Workshop 2005 17

TAU Measurement System Configuration
� configure [OPTIONS]

� {-c++=<CC>, -cc=<cc>} Specify C++ and C compilers
� {-pthread, -sproc} Use pthread or SGI sproc threads
� -openmp Use OpenMP threads
� -jdk=<dir> Specify Java instrumentation (JDK)
� -opari=<dir> Specify location of Opari OpenMP tool
� -papi=<dir> Specify location of PAPI
� -pdt=<dir> Specify location of PDT
� -dyninst=<dir> Specify location of DynInst Package
� -mpi[inc/lib]=<dir> Specify MPI library instrumentation
� -shmem[inc/lib]=<dir> Specify PSHMEM library instrumentation
� -python[inc/lib]=<dir> Specify Python instrumentation
� -epilog=<dir> Specify location of EPILOG
� -slog2[=<dir>] Specify location of SLOG2/Jumpshot
� -vtf=<dir> Specify location of VTF3 trace package
� -arch=<architecture> Specify architecture explicitly

(bgl,ibm64,ibm64linux…)

TAU Performance SystemACTS Workshop 2005 18

TAU Measurement System Configuration
� configure [OPTIONS]

� -TRACE Generate binary TAU traces
� -PROFILE (default) Generate profiles (summary)
� -PROFILECALLPATH Generate call path profiles
� -PROFILEPHASE Generate phase based profiles
� -PROFILEMEMORY Track heap memory for each routine
� -PROFILEHEADROOM Track memory headroom to grow
� -MULTIPLECOUNTERS Use hardware counters + time
� -COMPENSATE Compensate timer overhead
� -CPUTIME Use usertime+system time
� -PAPIWALLCLOCK Use PAPI’s wallclock time
� -PAPIVIRTUAL Use PAPI’s process virtual time
� -SGITIMERS Use fast IRIX timers
� -LINUXTIMERS Use fast x86 Linux timers

TAU Performance SystemACTS Workshop 2005 19

TAU Measurement Configuration – Examples
� ./configure -c++=xlC_r –pthread

� Use TAU with xlC_r and pthread library under AIX
� Enable TAU profiling (default)

� ./configure -TRACE –PROFILE
� Enable both TAU profiling and tracing

� ./configure -c++=xlC_r -cc=xlc_r
-papi=/usr/local/packages/papi
-pdt=/usr/local/pdtoolkit-3.4 –arch=ibm64
-mpiinc=/usr/lpp/ppe.poe/include
-mpilib=/usr/lpp/ppe.poe/lib -MULTIPLECOUNTERS
� Use IBM’s xlC_r and xlc_r compilers with PAPI, PDT, MPI packages and

multiple counters for measurements
� Typically configure multiple measurement libraries
� Each configuration creates a unique <arch>/lib/Makefile.tau-<options>

stub makefile that corresponds to the configuration options specified. E.g.,
� /san/cca/tau/tau-2.14.7/x86_64/lib/Makefile.tau-icpc-mpi-pdt
� /san/cca/tau/tau-2.14.7/x86_64/lib/Makefile.tau-icpc-mpi-pdt-trace

TAU Performance SystemACTS Workshop 2005 20

TAU_SETUP: A GUI for Installing TAU

tau-2.x>./tau_setup

TAU Performance SystemACTS Workshop 2005 21

Configuration Parameters in Stub Makefiles
� Each TAU Stub Makefile resides in <tau><arch>/lib directory
� Variables:

� TAU_CXX Specify the C++ compiler used by TAU
� TAU_CC, TAU_F90 Specify the C, F90 compilers
� TAU_DEFS Defines used by TAU. Add to CFLAGS
� TAU_LDFLAGS Linker options. Add to LDFLAGS
� TAU_INCLUDE Header files include path. Add to CFLAGS
� TAU_LIBS Statically linked TAU library. Add to LIBS
� TAU_SHLIBS Dynamically linked TAU library
� TAU_MPI_LIBS TAU’s MPI wrapper library for C/C++
� TAU_MPI_FLIBS TAU’s MPI wrapper library for F90
� TAU_FORTRANLIBS Must be linked in with C++ linker for F90
� TAU_CXXLIBS Must be linked in with F90 linker
� TAU_INCLUDE_MEMORY Use TAU’s malloc/free wrapper lib
� TAU_DISABLE TAU’s dummy F90 stub library
� TAU_COMPILER Instrument using tau_compiler.sh script
Note: Not including TAU_DEFS in CFLAGS disables instrumentation in

C/C++ programs (TAU_DISABLE for f90).

TAU Performance SystemACTS Workshop 2005 22

Using TAU
Step 1: Configure and install TAU:
% configure -pdt=<dir> -mpiinc=<dir> -mpilib=<dir>
-c++=icpc -cc=icc -fortran=intel

% make clean; make install

Builds <taudir>/<arch>/lib/Makefile.tau-<options>
% set path=($path <taudir>/<arch>/bin)

Step 2: Choose target stub Makefile
% setenv TAU_MAKEFILE

/san/cca/tau/tau-2.14.7/x86_64/lib/Makefile.tau-icpc-mpi-pdt

% setenv TAU_OPTIONS ‘-optVerbose -optKeepFiles’

(see tau_compiler.sh for all options)

Step 3: Use tau_f90.sh, tau_cxx.sh and tau_cc.sh as the F90, C++ or C compilers
respectively.
% tau_f90.sh -c app.f90

% tau_f90.sh app.o -o app -lm -lblas

Or use these in the application Makefile.

TAU Performance SystemACTS Workshop 2005 23

AutoInstrumentation using TAU_COMPILER
� $(TAU_COMPILER) stub Makefile variable in 2.14+ release
� Invokes PDT parser, TAU instrumentor, compiler through

tau_compiler.sh shell script
� Requires minimal changes to application Makefile

� Compilation rules are not changed
� User sets TAU_MAKEFILE and TAU_OPTIONS environment

variables
� User renames the compilers

� F90=xlf90
to
� F90= tau_f90.sh

� Passes options from TAU stub Makefile to the four compilation
stages

� Uses original compilation command if an error occurs

TAU Performance SystemACTS Workshop 2005 24

Tau_[cxx,cc,f90].sh – Improves Integration in Makefiles

OLD
include /usr/tau-2.14/include/Makefile

CXX = mpCC

F90 = mpxlf90_r

PDTPARSE = $(PDTDIR)/
$(PDTARCHDIR)/bin/cxxparse

TAUINSTR = $(TAUROOT)/$(CONFIG_ARCH)/
bin/tau_instrumentor

CFLAGS = $(TAU_DEFS) $(TAU_INCLUDE)

LIBS = $(TAU_MPI_LIBS) $(TAU_LIBS) -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:

$(PDTPARSE) $<

$(TAUINSTR) $*.pdb $< -o
$*.i.cpp –f select.dat

$(CC) $(CFLAGS) -c $*.i.cpp

NEW
set TAU_MAKEFILE and TAU_OPTIONS env vars

CXX = tau_cxx.sh

F90 = tau_f90.sh

CFLAGS =

LIBS = -lm

OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)

$(CXX) $(LDFLAGS) $(OBJS) -o $@
$(LIBS)

.cpp.o:

$(CC) $(CFLAGS) -c $<

TAU Performance SystemACTS Workshop 2005 25

TAU_COMPILER Options
� Optional parameters for $(TAU_COMPILER):

� -optVerbose Turn on verbose debugging messages
� -optPdtDir="" PDT architecture directory. Typically $(PDTDIR)/$(PDTARCHDIR)
� -optPdtF95Opts="" Options for Fortran parser in PDT (f95parse)
� -optPdtCOpts="" Options for C parser in PDT (cparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
� -optPdtCxxOpts="" Options for C++ parser in PDT (cxxparse). Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
� -optPdtF90Parser="" Specify a different Fortran parser. For e.g., f90parse instead of f95parse
� -optPdtUser="" Optional arguments for parsing source code
� -optPDBFile="" Specify [merged] PDB file. Skips parsing phase.
� -optTauInstr="" Specify location of tau_instrumentor. Typically

$(TAUROOT)/$(CONFIG_ARCH)/bin/tau_instrumentor
� -optTauSelectFile="" Specify selective instrumentation file for tau_instrumentor
� -optTau="" Specify options for tau_instrumentor
� -optCompile="" Options passed to the compiler. Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
� -optLinking="" Options passed to the linker. Typically

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
� -optNoMpi Removes -l*mpi* libraries during linking (default)
� -optKeepFiles Does not remove intermediate .pdb and .inst.* files

e.g.,
% setenv TAU_OPTIONS ‘-optTauSelectFile=select.tau –

optVerbose -optPdtCOpts=“-I/home -DFOO” ’
% tau_cxx.sh matrix.cpp -o matrix -lm

TAU Performance SystemACTS Workshop 2005 26

Instrumentation Specification
% tau_instrumentor

Usage : tau_instrumentor <pdbfile> <sourcefile> [-o <outputfile>] [-noinline]
[-g groupname] [-i headerfile] [-c|-c++|-fortran] [-f <instr_req_file>]

For selective instrumentation, use –f option

% tau_instrumentor foo.pdb foo.cpp –o foo.inst.cpp –f selective.dat

% cat selective.dat

Selective instrumentation: Specify an exclude/include list of routines/files.

BEGIN_EXCLUDE_LIST

void quicksort(int *, int, int)

void sort_5elements(int *)

void interchange(int *, int *)

END_EXCLUDE_LIST

BEGIN_FILE_INCLUDE_LIST

Main.cpp

Foo?.c

*.C

END_FILE_INCLUDE_LIST

Instruments routines in Main.cpp, Foo?.c and *.C files only

Use BEGIN_[FILE]_INCLUDE_LIST with END_[FILE]_INCLUDE_LIST

TAU Performance SystemACTS Workshop 2005 27

tau_reduce: Rule-Based Overhead Analysis
� Analyze the performance data to determine events with

high (relative) overhead performance measurements
� Create a select list for excluding those events
� Rule grammar (used in tau_reduce tool)

[GroupName:] Field Operator Number
� GroupName indicates rule applies to events in group
� Field is a event metric attribute (from profile statistics)

� numcalls, numsubs, percent, usec, cumusec, count [PAPI],
totalcount, stdev, usecs/call, counts/call

� Operator is one of >, <, or =
� Number is any number
� Compound rules possible using & between simple rules

TAU Performance SystemACTS Workshop 2005 28

Optimizing Instrumentation Overhead: Examples

� #Exclude all events that are members of TAU_USER
#and use less than 1000 microseconds
TAU_USER:usec < 1000

� #Exclude all events that have less than 100
#microseconds and are called only once
usec < 1000 & numcalls = 1

� #Exclude all events that have less than 1000 usecs per
#call OR have a (total inclusive) percent less than 5
usecs/call < 1000
percent < 5

� Scientific notation can be used
� usec>1000 & numcalls>400000 & usecs/call<30 & percent>25

TAU Performance SystemACTS Workshop 2005 29

TAU_REDUCE

� Reads profile files and rules
� Creates selective instrumentation file

� Specifies which routines should be excluded from
instrumentation

tau_reduce

rules

profile

Selective
instrumentation file

TAU Performance SystemACTS Workshop 2005 30

Instrumentation of OpenMP Constructs
�� OOpenMP PPragma AAnd RRegion IInstrumentor
� Source-to-Source translator to insert POMP calls

around OpenMP constructs and API functions
� Done: Supports

� Fortran77 and Fortran90, OpenMP 2.0
� C and C++, OpenMP 1.0
� POMP Extensions
� EPILOG and TAU POMP implementations
� Preserves source code information (#line line file)

� Work in Progress:
Investigating standardization through OpenMP Forum

� KOJAK Project website http://icl.cs.utk.edu/kojak

TAU Performance SystemACTS Workshop 2005 31

OpenMP API Instrumentation
� Transform

� omp_#_lock() →→→→ pomp_#_lock()

� omp_#_nest_lock()→→→→ pomp_#_nest_lock()

[# = init | destroy | set | unset | test]

� POMP version
� Calls omp version internally
� Can do extra stuff before and after call

TAU Performance SystemACTS Workshop 2005 32

Example: !$OMP PARALLEL DO Instrumentation

!$OMP PARALLEL DO clauses...

do loop

!$OMP END PARALLEL DO

!$OMP PARALLEL other-clauses...

!$OMP DO schedule-clauses, ordered-clauses,
lastprivate-clauses

do loop
!$OMP END DO

!$OMP END PARALLEL DO

NOWAIT

!$OMP BARRIER

call pomp_parallel_fork(d)

call pomp_parallel_begin(d)

call pomp_parallel_end(d)

call pomp_parallel_join(d)

call pomp_do_enter(d)

call pomp_do_exit(d)

call pomp_barrier_enter(d)

call pomp_barrier_exit(d)

TAU Performance SystemACTS Workshop 2005 33

Opari Instrumentation: Example
� OpenMP directive instrumentation

pomp_for_enter(&omp_rd_2);

#line 252 "stommel.c"

#pragma omp for schedule(static) reduction(+: diff) private(j)
firstprivate (a1,a2,a3,a4,a5) nowait

for(i=i1;i<=i2;i++) {

for(j=j1;j<=j2;j++){

new_psi[i][j]=a1*psi[i+1][j] + a2*psi[i-1][j] + a3*psi[i][j+1]

+ a4*psi[i][j-1] - a5*the_for[i][j];

diff=diff+fabs(new_psi[i][j]-psi[i][j]);

}

}

pomp_barrier_enter(&omp_rd_2);

#pragma omp barrier

pomp_barrier_exit(&omp_rd_2);

pomp_for_exit(&omp_rd_2);

#line 261 "stommel.c"

TAU Performance SystemACTS Workshop 2005 34

Using Opari with TAU

Step I: Configure KOJAK/opari [Download from http://www.fz-juelich.de/zam/kojak/]
% cd kojak-2.1; cp mf/Makefile.defs.ibm Makefile.defs;
edit Makefile

% make

Builds opari

Step II: Configure TAU with Opari (used here with MPI and PDT)
% configure –opari=/usr/contrib/TAU/kojak-2.1/opari

-mpiinc=/usr/lpp/ppe.poe/include
–mpilib=/usr/lpp/ppe.poe/lib
–pdt=/usr/contrib/TAU/pdtoolkit-3.4

% make clean; make install

% setenv TAU_MAKEFILE /tau/<arch>/lib/Makefile.tau-…opari-…

% tau_cxx.sh -c foo.cpp

% tau_cxx.sh -c bar.f90

% tau_cxx.sh *.o -o app

TAU Performance SystemACTS Workshop 2005 35

Advances in TAU Measurement
� Profiling (four types)

� Memory profiling
� global heap memory tracking (several options)

� Callpath profiling and calldepth profiling
� user-controllable callpath length and calling depth

� Phase-based profiling
� Tracing

� Generation of VTF3 / SLOG2 traces files (fully portable)
� Inclusion of hardware performance counts in trace files
� Hierarchical trace merging

� Online performance overhead compensation
� Component software proxy generation and monitoring

TAU Performance SystemACTS Workshop 2005 36

Building Bridges to Other Tools: TAU

TAU Performance SystemACTS Workshop 2005 37

TAU Tracing Enhancements
� Configure TAU with -TRACE –vtf=<dir> -slog2 options

% configure –TRACE –vtf=<dir> …

Generates tau_merge, tau2vtf tools in <tau>/<arch>/bin directory
% configure -TRACE -slog2

Generates tau2slog2 and jumpshot v4 tools bundled with TAU in
<tau>/<arch>/bin directory
� Need working javac [v1.4] in your path

� Execute application
% mpirun -np 4 app

� Merge and convert trace files to VTF3/SLOG2 format
% tau_treemerge.pl
% tau2vtf tau.trc tau.edf app.vpt.gz
% traceanalyzer foo.vpt.gz

% tau2slog2 tau.trc tau.edf app.slog2
% jumpshot app.slog2

TAU Performance SystemACTS Workshop 2005 38

Intel ® Traceanalyzer (Vampir) Global Timeline

TAU Performance SystemACTS Workshop 2005 39

Visualizing TAU Traces with Counters/Samples

TAU Performance SystemACTS Workshop 2005 40

Visualizing TAU Traces with Counters/Samples

TAU Performance SystemACTS Workshop 2005 41

Memory Profiling in TAU
� Configuration option –PROFILEMEMORY

� Records global heap memory utilization for each function
� Takes one sample at beginning of each function and associates the sample

with function name
� Configuration option -PROFILEHEADROOM

� Records headroom (amount of free memory to grow) for each function
� Takes one sample at beginning of each function and associates it with the

callstack [TAU_CALLPATH_DEPTH env variable]
� Independent of instrumentation/measurement options selected
� No need to insert macros/calls in the source code
� User defined atomic events appear in profiles/traces

TAU Performance SystemACTS Workshop 2005 42

Memory Profiling in TAU

Flash2 code profile (-PROFILEMEMORY) on IBM BlueGene/L [MPI rank 0]

TAU Performance SystemACTS Workshop 2005 43

Memory Profiling in TAU
� Instrumentation based observation of global heap memory (not per

function)
� call TAU_TRACK_MEMORY()
� call TAU_TRACK_MEMORY_HEADROOM()

� Triggers one sample every 10 secs
� call TAU_TRACK_MEMORY_HERE()
� call TAU_TRACK_MEMORY_HEADROOM_HERE()

� Triggers sample at a specific location in source code
� call TAU_SET_INTERRUPT_INTERVAL(seconds)

� To set inter-interrupt interval for sampling
� call TAU_DISABLE_TRACKING_MEMORY()
� call TAU_DISABLE_TRACKING_MEMORY_HEADROOM()

� To turn off recording memory utilization
� call TAU_ENABLE_TRACKING_MEMORY()
� call TAU_ENABLE_TRACKING_MEMORY_HEADROOM()

� To re-enable tracking memory utilization

TAU Performance SystemACTS Workshop 2005 44

Profile Measurement – Three Flavors
� Flat profiles

� Time (or counts) spent in each routine (nodes in callgraph).
� Exclusive/inclusive time, no. of calls, child calls
� E.g,: MPI_Send, foo, …

� Callpath Profiles
� Flat profiles, plus
� Sequence of actions that led to poor performance
� Time spent along a calling path (edges in callgraph)
� E.g., “main=> f1 => f2 => MPI_Send” shows the time spent in MPI_Send

when called by f2, when f2 is called by f1, when it is called by main. Depth
of this callpath = 4 (TAU_CALLPATH_DEPTH environment variable)

� Phase based profiles
� Flat profiles, plus
� Flat profiles under a phase (nested phases are allowed)
� Default “main” phase has all phases and routines invoked outside phases
� Supports static or dynamic (per-iteration) phases
� E.g., “IO => MPI_Send” is time spent in MPI_Send in IO phase

TAU Performance SystemACTS Workshop 2005 45

TAU Timers and Phases
� Static timer

� Shows time spent in all invocations of a routine (foo)
� E.g., “foo()” 100 secs, 100 calls

� Dynamic timer
� Shows time spent in each invocation of a routine
� E.g., “foo() 3” 4.5 secs, “foo 10” 2 secs (invocations 3 and 10 respectively)

� Static phase
� Shows time spent in all routines called (directly/indirectly) by a given

routine (foo)
� E.g., “foo() => MPI_Send()” 100 secs, 10 calls shows that a total of 100

secs were spent in MPI_Send() when it was called by foo.
� Dynamic phase

� Shows time spent in all routines called by a given invocation of a routine.
� E.g., “foo() 4 => MPI_Send()” 12 secs, shows that 12 secs were spent in

MPI_Send when it was called by the 4th invocation of foo.

TAU Performance SystemACTS Workshop 2005 46

Advances in TAU Performance Analysis
� Enhanced parallel profile analysis (ParaProf)

� Callpath analysis integration in ParaProf
� Event callgraph view

� Performance Data Management Framework (PerfDMF)
� First release of prototype

� Integration with Vampir Next Generation (VNG)
� Online trace analysis

� 3D Performance visualization prototype
� Component performance modeling and QoS

TAU Performance SystemACTS Workshop 2005 47

Pprof – Flat Profile (NAS PB LU)
� Intel Linux

cluster
� F90 +

MPICH
� Profile

- Node
- Context
- Thread

� Events
- code
- MPI

� Metric
- time

� Text display

TAU Performance SystemACTS Workshop 2005 48

ParaProf – Manager Window

performance
database

derived performance metrics

TAU Performance SystemACTS Workshop 2005 49

ParaProf – Full Profile (Miranda)
8K processors!

TAU Performance SystemACTS Workshop 2005 50

ParaProf– Flat Profile (Miranda)

TAU Performance SystemACTS Workshop 2005 51

ParaProf– Callpath Profile (Flash)

TAU Performance SystemACTS Workshop 2005 52

ParaProf– Callpath Profile (ESMF)

21-level
callpath

TAU Performance SystemACTS Workshop 2005 53

Gprof Style Callpath View in Paraprof (SAGE)

TAU Performance SystemACTS Workshop 2005 54

ParaProf – Phase Profile (MFIX)

In 51st iteration, time
spent in MPI_Waitall
was 85.81 secs

Total time spent in
MPI_Waitall was
4137.9 secs across all
92 iterations

dynamic phases
one per interation

TAU Performance SystemACTS Workshop 2005 55

ParaProf - Statistics Table (Uintah)

TAU Performance SystemACTS Workshop 2005 56

ParaProf – Histogram View (Miranda)

8k processors 16k processors

� Scalable 2D displays

TAU Performance SystemACTS Workshop 2005 57

ParaProf –Callgraph View (MFIX)

TAU Performance SystemACTS Workshop 2005 58

ParaProf – Callpath Highlighting (Flash)

MODULEHYDRO_1D:HYDRO_1D

TAU Performance SystemACTS Workshop 2005 59

Profiling of Miranda on BG/L

128 Nodes 512 Nodes 1024 Nodes

� Profile code performance (automatic instrumentation)
� Scaling studies (problem size, number of processors)

� Run on 8K,16K and 32K processors!

TAU Performance SystemACTS Workshop 2005 60

ParaProf – 3D Full Profile (Miranda)

16k processors

TAU Performance SystemACTS Workshop 2005 61

ParaProf Bar Plot (Zoom in/out +/-)

TAU Performance SystemACTS Workshop 2005 62

ParaProf – 3D Scatterplot (Miranda)
� Each point

is a “thread”
of execution

� A total of
four metrics
shown in
relation

� ParaVis 3D
profile
visualization
library
� JOGL

TAU Performance SystemACTS Workshop 2005 63

Vampir Trace Visualizer/Intel ® TraceAnalyzer 4
� Visualization and

Analysis of MPI
Programs

� Originally developed
by Forschungszentrum
Jülich

� Current development
by Technical
University Dresden,
Germany

� Distributed by Intel
� http://www.vampir-ng.de

TAU Performance SystemACTS Workshop 2005 64

Performance Tracing on Miranda
� Use TAU to generate VTF3 traces for Vampir analysis

� MPI calls with HW counter information (not shown)
� Detailed code behavior to focus optimization efforts

TAU Performance SystemACTS Workshop 2005 65

S3D on Lemieux (tau2vtf, Vampir)

TAU Performance SystemACTS Workshop 2005 66

S3D on Lemieux (Zoomed)

TAU Performance SystemACTS Workshop 2005 67

Jumpshot Trace Visualizer [ANL] (S3D)

TAU Performance SystemACTS Workshop 2005 68

Jumpshot Trace Visualizer (S3D on Tru64)

TAU Performance SystemACTS Workshop 2005 69

TAU Performance System Status
� Computing platforms (selected)

� IBM SP/pSeries/BGL, SGI Altix/Origin, Cray T3E/SV-
1/X1/XT3, HP (Compaq) SC (Tru64), Sun, Hitachi
SR8000, NEC SX-5/6, Linux clusters (IA-32/64, Alpha,
PPC, PA-RISC, Power, Opteron), Apple (G4/5, OS X),
Windows

� Programming languages
� C, C++, Fortran 77/90/95, HPF, Java, Python

� Thread libraries (selected)
� pthreads, SGI sproc, Java,Windows, OpenMP

� Compilers (selected)
� Intel, PGI, GNU, Fujitsu, Sun, PathScale, SGI, Cray,

IBM, HP, NEC, Absoft, Lahey, Nagware

TAU Performance SystemACTS Workshop 2005 70

Project Affiliations (selected)
� Center for Simulation of Accidental Fires and Explosion

� University of Utah, ASCI ASAP Center, C-SAFE
� Uintah Computational Framework (UCF) (C++)

� Center for Simulation of Dynamic Response of Materials
� California Institute of Technology, ASCI ASAP Center
� Virtual Testshock Facility (VTF) (Python, Fortran 90)

� Earth Systems Modeling Framework (ESMF)
� NSF, NOAA, DOE, NASA, …
� Instrumentation for ESMF framework and applications
� C, C++, and Fortran 95 code modules
� MPI wrapper library for MPI calls

TAU Performance SystemACTS Workshop 2005 71

Project Affiliations (selected) (continued)
� Lawrence Livermore National Lab

� Hydrodynamics (Miranda)
� Sandia National Lab and Los Alamos National Lab

� DOE CCTTSS SciDAC project
� Common component architecture (CCA) integration

� Argonne National Lab
� Jumpshot SLOG2 SDK project
� ZeptoOS - scalable components for petascale

architectures
� KTAU - integration of TAU infrastructure in Linux kernel

� Oak Ridge National Lab
� Contribution to the Joule Report: S3D, AORSA3D

TAU Performance SystemACTS Workshop 2005 72

Important Questions for Application Developers
� How does performance vary with different compilers?
� Is poor performance correlated with certain OS features?
� Has a recent change caused unanticipated performance?
� How does performance vary with MPI variants?
� Why is one application version faster than another?
� What is the reason for the observed scaling behavior?
� Did two runs exhibit similar performance?
� How are performance data related to application events?
� Which machines will run my code the fastest and why?
� Which benchmarks predict my code performance best?

TAU Performance SystemACTS Workshop 2005 73

Performance Problem Solving Goals
� Answer questions at multiple levels of interest

� Data from low-level measurements and simulations
� use to predict application performance

� High-level performance data spanning dimensions
�machine, applications, code revisions, data sets
� examine broad performance trends

� Discover general correlations application performance
and features of their external environment

� Develop methods to predict application performance on
lower-level metrics

� Discover performance correlations between a small set
of benchmarks and a collection of applications that
represent a typical workload for a given system

TAU Performance SystemACTS Workshop 2005 74

Performance Data Management Framework

TAU Performance SystemACTS Workshop 2005 75

ParaProf Performance Profile Analysis

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial

TAU Performance SystemACTS Workshop 2005 76

PerfExplorer
� Performance knowledge discovery framework

� Use the existing TAU infrastructure
�TAU instrumentation data, PerfDMF

� Client-server based system architecture
� Data mining analysis applied to parallel performance data

� comparative, clustering, correlation, dimension reduction, ...
� Technology integration

� Relational DatabaseManagement Systems (RDBMS)
� Java API and toolkit
� R-project / Omegahat statistical analysis
� WEKA data mining package
� Web-based client

TAU Performance SystemACTS Workshop 2005 77

PerfExplorer Architecture

TAU Performance SystemACTS Workshop 2005 78

PerfExplorer Client GUI

TAU Performance SystemACTS Workshop 2005 79

Hierarchical and K-means Clustering (sPPM)

TAU Performance SystemACTS Workshop 2005 80

Miranda Clustering on 16K Processors

TAU Performance SystemACTS Workshop 2005 81

PERC Tool Requirements and Evaluation
� Performance Evaluation Research Center (PERC)

� DOE SciDAC
� Evaluation methods/tools for high-end parallel systems

� PERC tools study (led by ORNL, Pat Worley)
� In-depth performance analysis of select applications
� Evaluation performance analysis requirements
� Test tool functionality and ease of use

� Applications
� Start with fusion code – GYRO
� Repeat with other PERC benchmarks
� Continue with SciDAC codes

TAU Performance SystemACTS Workshop 2005 82

Primary Evaluation Machines
� Phoenix (ORNL – Cray X1)

� 512 multi-streaming vector processors
� Ram (ORNL – SGI Altix (1.5 GHz Itanium2))

� 256 total processors
� TeraGrid

� ~7,738 total processors on 15 machines at 9 sites
� Cheetah (ORNL – p690 cluster (1.3 GHz, HPS))

� 864 total processors on 27 compute nodes
� Seaborg (NERSC – IBM SP3)

� 6080 total processors on 380 compute nodes

TAU Performance SystemACTS Workshop 2005 83

GYRO Execution Parameters
� Three benchmark problems

� B1-std : 16n processors, 500 timesteps
� B2-cy : 16n processors, 1000 timesteps
� B3-gtc : 64n processors, 100 timesteps (very large)

� Test different methods to evaluate nonlinear terms:
� Direct method
� FFT (“nl2” for B1 and B2, “nl1” for B3)

� Task affinity enabled/disabled (p690 only)
� Memory affinity enabled/disabled (p690 only)
� Filesystem location (Cray X1 only)

TAU Performance SystemACTS Workshop 2005 84

PerfExplorer Analysis of Self-Instrumented Data
� PerfExplorer

� Focus on comparative analysis
� Apply to PERC tool evaluation study

� Look at user timer data
� Aggregate data

� no per process data
� process clustering analysis is not applicable

� Timings output every N timesteps
� some phase analysis possible

� Goal
� Recreate manually generated performance reports

TAU Performance SystemACTS Workshop 2005 85

PerfExplorer Interface

Select experiments
and trials of interest

Data organized in application,
experiment, trial structure
(will allow arbitrary in future)

Experiment
metadata

TAU Performance SystemACTS Workshop 2005 86

PerfExplorer Interface

Select analysis

TAU Performance SystemACTS Workshop 2005 87

B1-std

B3-gtc

Timesteps per Second
� Cray X1 is the fastest to

solution in all 3 tests
� FFT (nl2) improves time for

B3-gtc only
� TeraGrid faster than p690 for

B1-std?
� Plots generated automatically

B1-std

B2-cy B3-gtc

TeraGrid

TAU Performance SystemACTS Workshop 2005 88

Relative Efficiency (B1-std)
� By experiment (B1-std)

� Total runtime (Cheetah (red))
� By event for one experiment

� Coll_tr (blue) is significant
� By experiment for one event

� Shows how Coll_tr behaves
for all experiments

16 processor
base case

Cheetah Coll_tr

TAU Performance SystemACTS Workshop 2005 89

Current and Future Work
� ParaProf

� Developing phase-based performance displays
� PerfDMF

� Adding new database backends and distributed support
� Building support for user-created tables

� PerfExplorer
� Extending comparative and clustering analysis
� Adding new data mining capabilities
� Building in scripting support

� Performance regression testing tool (PerfRegress)
� Integrate in Eclipse Parallel Tool Project (PTP)

TAU Performance SystemACTS Workshop 2005 90

Concluding Discussion
� Performance tools must be used effectively
� More intelligent performance systems for productive use

� Evolve to application-specific performance technology
� Deal with scale by “full range” performance exploration
� Autonomic and integrated tools
� Knowledge-based and knowledge-driven process

� Performance observation methods do not necessarily
need to change in a fundamental sense
� More automatically controlled and efficiently use

� Develop next-generation tools and deliver to community
� Open source with support by ParaTools, Inc.
� http://www.cs.uoregon.edu/research/tau

TAU Performance SystemACTS Workshop 2005 91

Hands-On Session
� Login to odin.cs.indiana.edu and get software
% cp /san/cca/tau/tautraining.tar.gz .
% tar zxf tautraining.tar.gz
� Follow instructions in the README file

TAU Performance SystemACTS Workshop 2005 92

Support Acknowledgements

� Department of Energy (DOE)
� Office of Science contracts
� University of Utah ASCI Level 1

sub-contract
� ASC/NNSA Level 3 contract

� NSF
� High-End Computing Grant

� Research Centre Juelich
� John von Neumann Institute
� Dr. Bernd Mohr

� Los Alamos National Laboratory

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

